Quality Transport Planning

NZMUGS Conference 2022

Model Measure R^{2} Premonitions Tim Wright, QTP Ltd

Disclaimer

- "The views and opinions expressed in this presentation belong solely to the presenter, and do not necessarily reflect the views of the presenter's employer, NZMUGs, the NZMUGs Committee or any other group or individual."

The Story Begins...

- Back in 2014, presented to MUGS on model measures adopted in TMDG and formerly in EEM...
- ...Presented an interpretation of three measures, questioned their applicability to model vs count comparisons and suggested some improvements...

2014 Presentation Conclusions

- Is GnT a better indicator of potential issues with models than GFH ?
- Is R^{2} appropriate to our purpose or should this be modified?
- \%RMSE not intuitive and of dubious value. Suggest replacing with \%MAD
- Preference is to investigate \& document reasons for all significant model vs. data discrepancies prior to and after any ME, rather than focussing on achieving a raft of arbitrary criteria.

The Story Begins...

- Back in 2 Time spent using atane

- ...Presen of three n their appl count cor suggeste। improver
- ...Most in presentat with some statistics...

The Story Continues...

- My first involvement was around 2015...
- ...and then between 2016 and 2018 in refining the model...
- Key Features:
- 3 Step SATURN Model
- Trip generation based on linear regression of 'similar' WTSM zone demands to population, employment types and school role
- Lights and Heavies Trip Ends estimated separately
- Trip Distribution based on a simple gravity model
- Subject to constrained ME
- In mine (and the Peer Reviewer's) view the enhanced model was genorally fit for its intended purpose.
- In 2019, the local authority expressed an interest in further refining the model to be able to apply it for general transport planning purposes within their District
- Hence for the model update in 2020, scope included considering the benefits of segmentation of the demand model to include purposebased demands

Non-Segmented Demands

 Direction	Population	Jobs			School Roll
		Health	Other		
AM_L Frm	0.12	0.77	0.34	0.21	0.16
AM_L To	0.02	1.86	0.97	0.42	0.16

- 'Trip Rates’ Initially based on linear regression of peak Light \& Heavy demands vs demographics for 'similar' WTSM model zones
- Example Trip Rates for AM Peak Hour
- Some small adjustments during model validation and consideration of TDB trip rates and other models
- Simple gravity model applied to resulting zonal trip ends
- Comparison to impedance function parameters used in other models
- Trip length validation / calibration against very limited MoT HH travel surveys for the District
- Multi-class assignments - Lights (all) \& Heavies

Non-Segmented Assignments

- Reasonable validation of flows to counts ($\mathrm{R}^{2} \sim 0.89$)
- Demands subject to subsequent constrained ME

The Concern...

- Arising from Peer Review, main concern was around trip distribution
- Could, for example, actual location of Home to Work trips (suburbs to CBD) be inaccurately occurring for, say, work to work locations?
- Could some Home to Work trips be distributed as locations of Home to Home trips ?

Initial Thinking...

- Highly simplified reflection of Model to consider implications of 'all-purpose' light-vehicle trips on trip distribution

Segmentation to Quasi-Purposes

- Trip generation regression analysis identified 5 variables:
- Population
- Retail Jobs
- Health Jobs
- Other (General) Jobs
- School Roll
- Why not use these as the basis of trip types or 'quasipurposes'?
- Population ~ Home-based trips
- Retail Jobs ~ Shopping trips (but include employees)
- Health Jobs ~ all Health-related trips (including employees)
- General Jobs ~ Work trips (except retail and health workers)
- School Roll ~ Education trips (excluding employees)

Segmentation: What We Need

Segmentation: Constrained Guesstimates

Estimate Proportions From			Shops	Health	Educ'n		Tot		Initial Trips Based on Froms				Educ'n	Tot
AM From	Home	Work							Home	Work	Shops	Health		
Home	5\%	50\%	15\%	10\%	20\%	100\%	0.12		151	1514	454	303	605	3027
Work	19\%	50\%	15\%	15\%	1\%	100\%	0.21		278	731	219	219	15	1462
Shops	4\%	45\%	45\%	5\%	1\%	100\%	0.77		23	263	263	29	6	584
Health	28\%	35\%	1\%	35\%	1\%	100\%	0.34		94	118	3	118	3	337
Educ'n	10\%	50\%	20\%	10\%	10\%	100\%	0.16		49	217	99	49	49	494
									596	(2872)	1038	719	679	5904
Estimate Pr	oportions								Initial Tri	ips Based	on To's			
AM To	Home	Work	Shops	Health	ducatio				Home	Work	Shops	Health	Educ'n	
Home	20\%	55\%	44\%	50\%	87\%				114	1592	618	479	429	3233
Work	50\%	20\%	25\%	20\%	1\%				284	579	351	192	5	1412
Shops	5\%	10\%	20\%	5\%	1\%				28	290	281	48	5	652
Health	15\%	5\%	1\%	15\%	1\%				85	145	14	144	5	393
Educ'n	10\%	10\%	10\%	10\%	10\%				57	290	141	96	49	632
	100\%	100\%	100\%	100\%	100\%			Tot	569	2895	1406	959	494	6322
Tot	0.02	0.42	1.86	0.97	0.16					-				

Segmentation "Bung it in the Furness"

Estimate Proportions From			Shops	Health	Educ'n		Post-Furness Proportions From				Health	Educ'n	
AM From	Home	Work					AM From	Home	Work	Shops			
Home	5\%	50\%	15\%	10\%	20\%	100\%	Home	4\%	49\%	19\%	14\%	14\%	100\%
Work	19\%	50\%	15\%	15\%	1\%	100\%	Work	18\%	44\%	22\%	16\%	1\%	100\%
Shops	4\%	45\%	45\%	5\%	1\%	100\%	Shops	4\%	42\%	47\%	7\%	1\%	100\%
Health	28\%	35\%	1\%	35\%	1\%	100\%	Health	23\%	34\%	3\%	39\%	1\%	100\%
Educ'n	10\%	50\%	20\%	10\%	10\%	100\%	Educ'n	9\%	46\%	24\%	14\%	7\%	100\%
Estimate P	portions						Post-Furne	Proport	ons To				
AM To	Home	Work	Shops	Health	Educ'n		AM To	Home	Work	Shops	Health	Educ'n	
Home	20\%	55\%	44\%	50\%	87\%		Home	23\%	55\%	45\%	48\%	89\%	
Work	50\%	20\%	25\%	20\%	1\%		Work	50\%	24\%	24\%	26\%	2\%	
Shops	5\%	10\%	20\%	5\%	1\%		Shops	4\%	9\%	21\%	4\%	1\%	
Health	15\%	5\%	1\%	15\%	1\%		Health	15\%	4\%	1\%	15\%	1\%	
Educ'n	10\%	10\%	10\%	10\%	10\%		Educ'n	8\%	8\%	9\%	8\%	8\%	
	100\%	100\%	100\%	100\%	100\%			100\%	100\%	100\%	100\%	100\%	

Resulting Quasi-Purpose Trip Rates

Furnessed Segmented Trip Rates

| AM From | Home | Work | Shops | Health | Education | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Home | 0.005 | 0.061 | 0.024 | 0.018 | 0.017 | $\mathbf{0 . 1 2}$ |
| Work | 0.038 | 0.092 | 0.046 | 0.033 | 0.001 | $\mathbf{0 . 2 1}$ |
| Shops | 0.029 | 0.321 | 0.365 | 0.051 | 0.005 | $\mathbf{0 . 7 7}$ |
| Health | 0.078 | 0.117 | 0.009 | 0.133 | 0.003 | $\mathbf{0 . 3 4}$ |
| Educatio | 0.014 | 0.074 | 0.038 | 0.023 | 0.011 | $\mathbf{0 . 1 6}$ |

AM To	Home	Work	Shops	Health	Education
Home	0.005	0.229	0.834	0.459	0.143
Work	0.012	0.099	0.454	0.247	0.003
Shops	0.001	0.038	0.391	0.042	0.001
Health	0.003	0.018	0.013	0.143	0.001
Educatior	0.002	0.035	0.166	0.076	0.012
	$\mathbf{0 . 0 2}$	$\mathbf{0 . 4 2}$	$\mathbf{1 . 8 6}$	$\mathbf{0 . 9 7}$	$\mathbf{0 . 1 6}$

Quasi-Purpose Os and Ds

\therefore QTP

Purpose:	1		2		3		4		5		6		7		8		9		10		11		12	
Zone	HH_O HH_D		HW_O HW_D		HS_O HS_D		HL_O HL_D		HE_O HE_D		WH_O WH_D		WW_O WW_D		WS_O WS_D		WL_O WL_D		WE_O WE_D		SH_O SH_D		SW_O SW_D	
8	4		42	58	17	23	12	17		16	8	11	19	26	9			9	0	0		1	7	
9	3	2	33	24		10	10		9	7	6	5	15		7		5	4	0	0	1	0	6	
10	3	2	33	25	13	10	9	7	9		6	5	15		7		5	4	0	0		0	6	
11	5	5	61	38	24	11	17	0	17	0	6	12	15	16	8	6	6	0	0	0	0	1	4	6
12	2	2	21	12	8	0	6	0	6	0	2	4	5	5	3	0	2	0	0	0	0	0	0	2
13	1	1	9	9	4	0	3	0	3	0	2	2	4	4	2	0	1	0	0	0	0	0	0	2
16	1	1	11	17	4	0	3	0	3	0	3	2	7	7	3	0	2	0	0	0	0	0	0	3
21	1	1	10	7	4	0	3	0	3		1	2	3	3	1	0	1	0	0	0	0	0	0	1
23	1	1	7	8	3	0	2	0	2	0	1	1	3	4	2	0	1	0	0	0	0	0	0	1
24	0	1	6	7	2	0	2	0	2		1	1	3	3	2	0	1	0	0	0	0	0	0	1
26	1	1	10	74	4	0	3	0	3		13	2	30	32	15	0	11	0	0	0	0	0	0	12
27	1	1	10	12	4	0	3	0	3	0	2	2	5	5	3	0	2	0	0	0	0	0	0	2
32	2	3	30	47	12	0	9	0	8	44	8	6	19	20	9	0	7	0	0	1	0	0	0	8
34	2	2	23	23	9	0	7	0	6	0	4	4	9	10	5	0	3	0	0	0	0	0	0	4
49		1	11	23		49	3	42		0		2		10		27		22				0	19	4
482	2	2	28	4	11	0	8	0	8	0	1	5	2	2	1	0	1	0	0	0	0	0	0	
483	1	1	16	4	7	0	5	15	5	0	1	3	2	2	1	0	1	8	0	0	0	0	0	
511	1	1	8	7	3	0	2	6	2	0	1	2	3	3	1	0	1	3	0	0	0	0	0	1
512	1	1	15	3	6	0	4	16	4	0	1	3	1	1	1	0	0	9	0	0	0	0	0	0
513	2	2	21	22	8	0	6	0	6	0	4	4	9	9	4	0	3	0	0	0	0	0	0	4
521	1	1	13	13	5	0	4	0	4	0	2	2	5	6	3	0	2	0	0	0	0	0	0	2
522	1	1	14	0	5	0	4	0	4	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0
531	2	2	19	0	8	0	6	0	5	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0
532	1	2	17	0	7	0	5	0	5	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0
541	1	1	7	37	3	0	2	0	2	85	6	1	15	16	8	0	5	0	0	2	0	0	0	6
542	3	3	33	8	13	0	10	20	9	0	1	6	3	3	2	0	1	11	0	0	0	1	0	1
543	1	1	11	2	4	0	3	0	3	0	0	2	1	1	0	0	0	0	0	0	0	0	0	0
544	3	3	35	2	14	0	10	0	10	0	0	7	1	1	0	0	0	0	0	0	0	1	0	0
551	1	1	15	38	6	0	4	25	4	0	6	3	15	16	8	0	5	13	0	0	0	0	0	6
552	1	1	12	5	5	11	3	75	3	0	1	2	2	2	1	6	1	40	0	0	0	0	4	1
553	2	3	28	7	11	0	8	0	8	0	1	5	3	3	1	0	1	0	0	0	0	0	0	1
554	5	6	66	5	26	0	19	0	18	30	1	13	2	2	1	0	1	0	0	1	0	1	0	1
Total:	123	131	1,479	1,583	589	631	425	456	411	440	266	285	638	683	321	344	229	245	8	9	22	24	243	260
Scale To:	127		1,479		589		425		411		285		661		332		237		8		24		252	

Lots of Demand Matrices

Assignment

- All 26 light vehicle matrices summed post-distribution
- 2 Heavy matrices (internals and externals) summed post distribution
- Summed Light and Heavies assigned separately, as per original single-purpose demand matrices

Effects of Demand Segmentation on Assigned Traffic (in Kiwiville)
 \therefore QTP

Effects of Demand Segmentation on Flow Validation

Summing-Up

- Models based on period-level trip rates applied to simplified demographic variables can provide reasonably accurate demand estimates, suitable as an input to a constrained ME process to forecast demands and network flows
- There is potential for some inaccuracies in trip distribution, dependent on the geographical and demographic nature of the model
- Subsequent segmentation of the trips to Quasi-Purposes can overcome such limitations
- In some ways, this bottom-up approach has an advantage over traditional models as there is greater control in the trip distribution over a larger number of trip types for each model period, meaning trip tours are implicitly modelled

Summing-Up (Continued, your Honour)

- The bottom-up approach also has the benefits of:
- not having to deal with unintuitive concept of productions and attractions
- No directionality factoring of Ps\&As to Os\&Ds (inaccuracies)
- No period factoring from daily to period levels (inaccuracies)
- In-practice, the effects of segmentation for this test-case have been shown to have a very modest impact on modelled flow accuracy
- However, the segmentation approach is considered worth pursuing as intuitively it should result in improved trip distribution and lower risk of inaccurate trip distribution in some circumstances
- The relative simplicity and intuitive nature of this bottom-up approach to developing trip generation and distribution models is considered worthy of consideration for other model-builds

Quality Transport Planning

The End.

Bottoms Up to Quasi-Purposes
 Tim Wright

